
O
n

J
a

b

a

A
R
R
A
A

K
M
N
D
D
C

1

o
l
d
d

i
d
t
o
p
i
p
P

0
d

International Journal of Pharmaceutics 428 (2012) 57– 67

Contents lists available at SciVerse ScienceDirect

International  Journal  of  Pharmaceutics

jo ur nal homep a ge: www.elsev ier .com/ locate / i jpharm

ptimization  of  matrix  tablets  controlled  drug  release  using  Elman  dynamic
eural  networks  and  decision  trees
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a  b  s  t  r  a  c  t

The  main  objective  of  the  study  was  to develop  artificial  intelligence  methods  for  optimization  of drug
release  from  matrix  tablets  regardless  of  the  matrix  type.  Static  and  dynamic  artificial  neural  networks
of the  same  topology  were  developed  to model  dissolution  profiles  of  different  matrix  tablets  types
(hydrophilic/lipid)  using  formulation  composition,  compression  force  used  for  tableting  and  tablets
porosity  and  tensile  strength  as input  data.  Potential  application  of  decision  trees  in  discovering  knowl-
edge  from  experimental  data  was  also  investigated.

Polyethylene  oxide  polymer  and  glyceryl  palmitostearate  were  used  as matrix  forming  materials  for
hydrophilic  and  lipid  matrix  tablets,  respectively  whereas  selected  model  drugs  were  diclofenac  sodium
and  caffeine.  Matrix  tablets  were  prepared  by  direct  compression  method  and  tested  for  in  vitro  dissolu-
tion  profiles.  Optimization  of  static  and dynamic  neural  networks  used  for  modeling  of drug  release
was  performed  using  Monte  Carlo  simulations  or genetic  algorithms  optimizer.  Decision  trees  were
constructed  following  discretization  of  data.

Calculated  difference  (f1) and similarity  (f2) factors  for predicted  and  experimentally  obtained  dissolu-

tion  profiles  of test  matrix  tablets  formulations  indicate  that  Elman  dynamic  neural  networks  as  well as
decision  trees  are  capable  of  accurate  predictions  of both  hydrophilic  and  lipid  matrix  tablets  dissolution
profiles.  Elman  neural  networks  were compared  to  most  frequently  used  static  network,  Multi-layered
perceptron,  and  superiority  of  Elman  networks  have  been  demonstrated.  Developed  methods  allow  sim-
ple, yet  very  precise  way  of  drug  release  predictions  for both  hydrophilic  and  lipid  matrix  tablets  having
controlled  drug  release.
. Introduction

Matrix tablets are the most frequently used modified release
ral dosage forms. Matrix forming material can be of hydrophilic,
ipid, inert and biodegradable type; and the choice of material in
osage formulation is dependent on drug properties and desired
rug release profile.

Hydrophilic matrix systems are the most commonly applied
n controlled release formulations, due to their ability to provide
esired release profiles for a wide range of drugs, robust formula-
ion, cost-effective manufacture, and broad regulatory acceptance
f the polymers (Tiwari and Rajabi-Siahboomi, 2008). Hydrophilic
olymers commonly used for preparation of hydrophilic matrices
nclude cellulose derivatives, various gums and polysaccharides,
olyethylene oxides, homo- and copolymers of acrylic acid, etc.
olyethylene oxides (PEOs) are directly compressible hydrophilic
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polymers that can be used to formulate controlled release matrix
tablets (Wu et al., 2005; Maggi et al., 2002). Control of the drug
release is achieved by polymer swelling and formation of the com-
pact gel layer on matrix tablet surface responsible for sustained
water diffusion and subsequent drug release. Once the gel layer
is formed it gradually starts to erode due to polymer dissolution,
leading to zero order kinetic drug release once the swelling and ero-
sion processes are synchronized. Diclofenac sodium is a BCS class 2
drug, with relatively short elimination half-life, therefore suitable
for preparation of controlled release hydrophilic matrix tablets.

Lipid matrix systems are formulated using non-swellable
lipophilic excipients, such as waxes and lipids (Özyazici et al., 2006).
Biocompatible and biodegradable lipid excipients have been rec-
ommended for controlled release formulations containing highly
soluble drugs. Excipients frequently used for lipid matrices formu-
lations are carnauba and bees wax, glyceryl monostearate, cetyl

and cetostearyl alcohol, stearic acid, etc. Drug diffusion from the
lipid matrix is sustained, with the possibility of enhanced drug
bioavailability. Lipid matrix tablets are usually produced by rather
complex methods, such as melt granulation or extrusion (Pouton

dx.doi.org/10.1016/j.ijpharm.2012.02.031
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:jpetrovic@pharmacy.bg.ac.rs
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nd Porter, 2008). Glyceryl palmitostearate is a lipid excipient that
nables usage of direct compression method to prepare matrix
ablets (Özyazici et al., 2006). It has firstly been used as tablet
ubricant, whereas the potential of application in controlled release

atrix tablets formulation has been recognized recently (Gökç e
t al., 2009; Sudha et al., 2010). Caffeine is a BCS class 1 model
rug used in the presented study to prepare controlled release lipid
atrix tablets.
Mechanical properties of directly compressed matrix tablets

emonstrate immense importance on drug release characteristics.
trength and porosity of matrix tablets dictate the speed of water
iffusion inside the matrix tablet and subsequent release of dis-
olved drug from the tablet. Influence of changes in relative porosity
n hydrophilic matrix tablet drug dissolution has been discussed in
etail (Petrović et al., 2009a).

Usage of artificial intelligence in formulation and optimization
f controlled release pharmaceutical preparations is of particular
mportance with the growing interest to support the establishment
f the design space and quality risk management in pharmaceuti-
al development (ICH Topic Q8, 2009). There have been various
pproaches to define a design space, concerning multidimen-
ional combination of formulation factors and process parameters
Peterson, 2008; Huang et al., 2009; MacGregor and Bruwer, 2008;
ikuchi and Takayama, 2010).

Artificial neural networks (ANNs) are data analysis algorithms
apable of adaptation to solve complex non-linear problems.
NNs can be classified as static and dynamic (recurrent) regard-

ng networks architecture, i.e. interconnectedness of its elements.
rchitecture of dynamic neural networks allows storage and
laboration of data in time, meaning that networks outputs are
ntegration of current inputs and previous outputs. More details
n ANNs are provided in the literature (Haykin, 1999; Gupta et al.,
003; Samarasinghe, 2006).

Application of ANNs in the design of controlled release drug
elivery systems has been reviewed in detail elsewhere (Sun et al.,
003). Superiority of MLP  neural network over multiple regres-
ion models for prediction of dissolution profiles was demonstrated
Quek et al., 2001). ANN models were developed to optimize mod-
fied release matrix tablets dissolution profiles (Zupancic Bozic
t al., 1997; Peh et al., 2000; Ibric et al., 2002; Chaibva et al.,
010; Barmpalexis et al., 2010). The importance of optimization of
umber of hidden layers in an ANN topology, as well as adequate
election of validation and testing data for prediction of dissolution
rofiles has been demonstrated (Ebube et al., 1997). Importance
f influence of processing variables (processing parameters of the
anufacturing method used to produce dosage form) on modified

elease dissolution profiles was investigated using ANNs (Leane
t al., 2003; Peng et al., 2006).

Since dissolution is a time dependent process, it is assumed that
ynamic (recurrent) neural networks are more appropriate tool for
issolution profile analysis, in comparison to static neural networks
such as Multi layered perceptron and Generalized regression neu-
al network). Recurrent one layer and Gamma  memory dynamic
etworks have been implemented in the modeling of drug release
Petrović et al., 2009b).  The potential of application of Elman neu-
al network (ENN) in the modeling of drug release has also been
valuated (Goh et al., 2003). ENN is considered as a special kind of
eed-forward networks that has additional memory neurons and
ocal feedback (Koker, 2006), therefore it is a simple dynamic neural
etwork.

Decision trees are nonparametric statistical technique (Breiman
t al., 1984), used for classification problems. Decision tree-based

lgorithms classification algorithms have tree structures consisting
f nodes (or leaves), branches, etc. The tree structure is constructed
ollowing a set of decision rules applied sequentially. Each deci-
ion rule is used to form branches (i.e. splitting) at a certain level
 Pharmaceutics 428 (2012) 57– 67

of the tree (Ren, 2003). Decision tree can be interpreted as a rule
induction technique, if different scenarios are forecasted from the
tree structure. Different algorithms can be used for decision trees
construction: ID3, C4.5, C5.0, CART (Classification and Regression
Trees), most of which were developed by Quinlan (1993). The
main concern for every algorithm is to select appropriate split-
ting attribute in a decision node. Splitting criteria in decision nodes
are goodness functions and the best splitting attribute is usually
the one that results in the smallest tree. The most frequently used
splitting criteria are: information gain, gain ratio and Gini index.
Decision trees were used to generate an expert system for the iden-
tification of film coating (Rowe and Upjohn, 1993); as an aid in
intravenous formulation development (Lee et al., 2003); for for-
mulation selection for poorly soluble drugs (Branchu et al., 2007);
to aid selection of candidate molecules for liposome loading and
to optimize loading conditions (Zucker et al., 2009); for analy-
sis of the fluidized-bed granulation process (Petrović et al., 2011),
etc. Decision trees have been used to analyze dissolution pro-
files for immediate release tablet formulations (Shao et al., 2007),
but there is no literature data on application of decision trees
methodology for characterization of controlled release dissolution
profiles.

The aim of the study presented here is to expand the utiliza-
tion of artificial neural networks (ANNs) to prediction of controlled
release matrix tablets dissolution profiles on the basis of knowl-
edge of formulation factors (composition), processing parameters
and tablets mechanical properties. ANNs of the same topology
were developed to model dissolution profiles of different matrix
tablets types (hydrophilic/lipid) using formulation composition,
compression force used for tableting and tablets porosity and ten-
sile strength as input data. Developed ANN models were used to
construct design space in order to elucidate optimal combination of
formulation factors and processing parameters to produce desired
dissolution profiles. Furthermore, potential application of deci-
sion trees in discovering knowledge from experimental data was
investigated.

2. Materials and methods

Compositions of matrix tablets were as follows: (a) hydrophilic:
polyethylene oxide polymer (Sentry Polyox® WSR  Coagulant-LEO
NF Grade; Dow Chemical Company, Charleston, USA), diclofenac
sodium (Novartis, Basel, Switzerland) and microcrystalline cellu-
lose (Avicel® PH 102; FMC, Philadelphia, USA); (b) lipid: glyceryl
palmitostearate (Precirol® ATO 5, Gattefossé GmbH, Weil am Rhein,
Germany), caffeine (BASF, Ludwigshafen, Germany) and manni-
tol (Novartis, Basel, Switzerland); and magnesium stearate. The
roles of the ingredients used were as follows: polyethylene oxide
polymer and glyceryl palmitostearate were hydrophilic and lipid
sustained release agents, respectively; microcrystalline cellulose
and mannitol were used as directly compressible diluents, and
magnesium stearate was used as lubricant. The content of drug
in each formulation (both hydrophilic and lipid tablets) was 30%
(w/w) and the content of matrix forming material and filler was
varied according to Tables 1 and 2. Weight ratio of matrix forming
materials was selected on the basis of results from previous exper-
imental work (screening experimental design was performed).
Prior to compression each formulation was  mixed in a Turbula
mixer type T2C (Willy A Bachofen AG, Basel, Switzerland) for
10 min. Matrix tablets were prepared by powder compression using
compression simulator Zwick® 1478 Universal Testing Instrument

(Zwick® GmbH, Ulm, Germany). Forces used for compression are
represented in Tables 1 and 2, varying from 3 to 7 kN in the case of
hydrophilic and from 4 to 8 kN in the case of lipid matrix tablets.
The compression took place with a speed of 20 mm/min. Before
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Table  1
Inputs used for training, validation and testing of artificial neural networks developed for modeling of diclofenac sodium release profiles for polyethylene oxide matrix tablets.

Formulation % (w/w) PEO WSR  coagulanta Compression force (kN) Porosity (%) Tensile strength (MPa)

Training and
validation set

C1 5 3 30.72 0.454
C2 5 5 23.17 1.081
C3 5  7 18.11 1.872
C4  10 3 30.02 0.503
C5 10  5 22.28 1.219
C6  10 7 16.75 1.971
C7  15 3 28.38 0.585
C8  15 5 21.08 1.281
C9 15 7 16.70 1.908
C10 10 5 22.18 0.454

Test  set C11 7.5 6 19.65 1.610
C12 12.5 4 24.64 0.827

a Diclofenac sodium weight ratio was 30% (w/w) for each formulation, whereas fraction of microcrystalline cellulose varied according to changes in PEO WSR  Coagulant %
(w/w).

Table  2
Inputs used for training, validation and testing of artificial neural networks developed for modeling of caffeine release profiles for glyceryl palmitostearate matrix tablets.

Formulation % (w/w) Precirola Compression force (kN) Porosity (%) Tensile strength (MPa)

Training and
validation set

P1 10 4 15.59 0.857
P2 10 6 12.24 1.317
P3  10 8 11.15 1.710
P4  15 4 15.13 0.987
P5  15 6 12.02 1.296
P6  15 8 9.62 1.579
P7 20 4 13.04 1.132
P8  20 6 10.92 1.343
P9 20  8 9.20 1.512
P10 15 6 15.59 0.857

Test  set P11 12.5 5 13.06 1.294
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a Caffeine weight ratio was 30% (w/w) for each formulation, whereas fraction of m

ach compression cycle, the punches and the die wall were lubri-
ated with magnesium stearate. The total weight of tablet matrices
as kept constant at 450 mg  for both hydrophilic and lipid matrix

ablets.
Tablets diameters and thickness were measured using a

icrometer digital caliper Digitcal (Tesa S.A., Renens, Switzerland).
nowing dimensions and tablets mass, relative density was  deter-
ined as the ratio of mass to volume of the tablets, i.e. mass of the

nit volume. Porosity of the tablets ε (%) was calculated using true
nd relative densities of drug and excipients:

 =
[

1 −
(

�a

�t

)]
× 100 (1)

here �a and �t denote relative and true density (g/cm3) of
ompressed powder compacts, respectively. True density of each
omponent was measured by a helium pycnometer (AccuPyc 1330,
icromeritics, USA).
The hardness of tablets was measured using Dr. Schleuinger

odel 8M tester (Dr. Schleuinger, Pharmatron, Solothurn,
witzerland). Tensile strength �T (MPa) was obtained taking into
ccount tablets diametral crushing force F (N) and dimensions R
nd h, radius and thickness (mm),  respectively:

T = 2 × F

� × R × h
(2)

Drug release test (Dissolution test) has been performed using
addles method (for hydrophilic matrix tablets) or rotating bas-
et method (for lipid matrix tablets); at Erweka DT 70 (Erweka,
ausenstamm, Germany) dissolution apparatus. Phosphate buffer

f pH 6.8 (USP 28) has been used as dissolution medium;
or each formulation dissolution test has been conducted on 6
ablets using 900 ml  of dissolution medium. Speed of rotation was
0 rpm and dissolution tests were conducted for 8 h. Samples for
11.75 1.346

tol varied according to changes in Precirol % (w/w).

measurement of drug release were taken in the following time
intervals: 0.5 h; 1 h, 1.5 h; 2 h, 3 h, 4 h, 5 h, 6 h, 7 h and 8 h. Samples
of 4 ml were taken and each sampling was  followed by addition of
4 ml  of fresh medium into dissolution vessels. Prior to determina-
tion of drug concentration, samples were filtered. Determination
of drug concentration has been carried out using UV  spectropho-
tometer Evolution 300 (Thermo Fisher Scientific, Cambridge, Great
Britain).

2.1. Determination of significant factors and factor interactions

In order to identify significant factors influencing dissolution
profiles of diclofenac sodium and caffeine from hydrophilic and
lipid matrix tablets, respectively, calculation of contrast values,
Lenth t-statistics and the corresponding p values was  performed.
Lenth’s method (1989) was used in order to reveal any statistically
significant effect (p < 0.1) of the factors or potential interactions
among factors.

2.2. Artificial neural networks

Commercially available Synapse 1.3.5 software was used on per-
sonal computer to design neural networks (Peltarion, Stockholm,
Sweden). Architecture of a network consists of blocks connected
with links. Blocks are information processing elements and the
central element of the block is forward propagator.

Data used for development of artificial neural networks mod-
els and assessment of the models accuracy was divided into three

subsets: training, validation and test data set. Data from training
and validation sets have been used to build models, with 75% of
data belonging to training set and 15% to validation set. Training
and validation data sets were randomly selected. Test set data was
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sed to assess the accuracy of developed models. It is important
o emphasize that test data were not represented to the network
uring its training.

After optimal conditions were selected (i.e. number of neurons
n hidden layers, weights, signal delay), networks have been trained

ith simultaneous monitoring of the progress of error for training
nd validation data set in order to determine when the training
hould be stopped. When the error for training data set was not
hanging any more, or when the error for validation data set started
o diverge, training was stopped.

Numbers of neurons in hidden layers, neurons weights and sig-
al delay were optimized using Monte Carlo simulations or genetic
lgorithms optimizer. Monte Carlo simulator enables selection of
umber of examples and epochs used for optimization. Examples
efer to the number of optimization cycles, whereas certain num-
er of epochs constitutes one optimization cycle. Genetic optimizer
lgorithm enables selection of number of active populations, gen-
rations and epochs. Number of active populations is referred to
s number of populations per generation (one population is one
roup of data). Selecting the number of trained generations as well
s the number of epochs required for training of each data group
asic optimizer parameters are set up. It is also possible to select the
ay in which selected parameters are combined in order to obtain
ew values of parameters (crossover), mutation type, i.e. the type
f random change that prevents algorithm calculations to get stuck
n local minimum (mutation) as well as the way in which single
arameters are chosen from the whole population (selection).

.3. Modeling of drug release profiles

To model matrix tablets drug release profiles both static and
ynamic neural networks have been used. Definition of optimal
rtificial neural network parameters is an easier task in the case of
tatic networks in comparison to dynamic ones, therefore data have
rstly been modeled with static networks and then with dynamic
etworks. Since percentages of drug released in specific time points
an be treated as time series, it is reasonable to expect that mod-
ling of drug release is more adequately performed using dynamic
han static neural networks.

It is important to emphasize that neural networks of the same
rchitecture were used for both hydrophilic and lipid matrix tablets
not simultaneously but separately for data sets), in order to
emonstrate modeling capabilities of ANNs regardless of the matrix
ablets type.

Modeling of drug release profiles using static neural networks
as been conducted by MLP  network, a basic static feedforward
ackpropagation neural network. Each layer of a MLP  network has
eights and functions. Activation function selected for application

n functional part of layers is Tanh sigmoid function. Monte Carlo
imulator, used for optimization of number of neurons in hidden
ayer and neurons weights, was set up to have 1000 epochs and
00 examples. Selected number of epochs and examples in Monte
arlo simulations is based upon testing of the influence of optimizer
arameters on networks predictive abilities. Number of epochs
nd examples were varied in the range of 100–1500 and 10–200,
espectively.

Modeling of drug release for hydrophilic and lipid matrix tablets
sing dynamic neural networks has been done using ENN, optimiz-

ng the number of neurons in hidden layers, neurons weights and
ime delay of signals using genetic algorithms. The dynamics of
he network comes from the connections among neurons, not the

eurons themselves. Recurrent links are used to provide network
ith a dynamic memory when hidden unit patterns are fed back to

hemselves (Elman, 1990). The fixed back connections result in the
aintenance of a copy of the previous values of the hidden units
 Pharmaceutics 428 (2012) 57– 67

since they propagate over the connections before the learning rule
is applied (Mazumdar and Harley, 2008).

In the second hidden layer (also known as the copied layer)
a feedback connection is established, therefore the system state
is memorized and integration of present and current response to
activation function is possible. This type of signal recurrence is
recognized as a one-step time delay (Zhang and Man, 1998). The
architecture of ENN can be represented as follows:

yk = fo

⎡
⎣ No∑

o=1

bo +
Nh∑

h=1

who · fh

⎛
⎝bh +

Ni∑
i=0

wihui +
Nh∑
j=0

wjhah(k − 1)

⎞
⎠
⎤
⎦

(3)

where uk and yk are networks primary input and output; wih, wjh
and who (i = 1, 2,. . .,Ni; j,h = 1, 2,. . .,Nh; o = 1, 2,. . .,No) are the weights
of the connections between the input and hidden units, between
the copied and the hidden units and between the hidden and the
output units, respectively. bh and bo are biases of hidden units
and output units, and fh(·) and fo(·) are hidden and output func-
tions respectively (Zhang and Man, 1998). In comparison to ENN,
calculation of MLP  networks output is much simpler and can be
represented as follows:

yk = fo

[
No∑

o=1

bo +
Nh∑

h=1

who · fh

(
bh +

Ni∑
i=0

wihui

)]
(4)

Activation function of ENN in hidden layers was Tanh sigmoid
whereas output layer had linear activation function. Key parame-
ters of the networks that were optimized using genetic algorithms
were the weights of the second (copied) hidden layer, since they
determine the impact of signal recurrence on the networks output.
Optimizations were carried out by selection of 20 active popula-
tions, 100 generations and 1000 epochs. Selected number of active
populations, generations and epochs for genetic algorithms is based
upon testing of the influence of optimizer parameters on net-
works predictive abilities. Number of populations, generations and
epochs were varied from 10 to 25, 10 to 200 and 100 to 1500,
respectively.

2.4. Decision trees

Decision tree analysis technique was performed using Rapid-
Miner 5.0 open-source software (Mierswa et al., 2006). In order
to perform classification analysis on drug release profiles, input
and output parameters were discretized in bins, with each bin
containing one element. Discretization transforms numerical val-
ues into categories. Decision trees are generated by recursively
partitioning the training data using a splitting attribute until all
the records in the partition belong to the same class (Chandra
and Varghese, 2009). Split-criteria used in the study were: Gini
index, gain ratio and information gain (with algorithms ID3/C4.5).
Splitting criteria are actually goodness functions and the best
splitting attribute is usually the one that results in the smallest
tree.

Training and validation data sets were used to construct the
trees and perform internal validation whereas test data set was
used for external validation, i.e. testing of developed trees.

2.5. Analysis of predictions
Predicted dissolution profiles were compared to experimentally
obtained profiles using Pearson correlation coefficient, r where n
is the number of sampling points, xi is experimentally obtained
percentage of the drug released after certain time periods whereas
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Fig. 1. Diclofenac sodium and caffeine release profil

i denotes predicted percentages of drug released after certain time
eriods:

 =

n∑
i=1

xiyi −

((
n∑

i=1

xi

n∑
i=1

yi

)
/n

)
√√√√( n∑

i=1

xi
2 −

((
n∑

i=1

xi

)2

/n

))
×

(
n∑

i=1

yi
2 −

((
n∑

i=1

yi

)2

/n

))

(5)

and by calculation of difference and similarity factors, f1 and f2.

1 =

n∑
i=1

|xi − yi|

n∑
i=1

xi

× 100 (6)

2 = 50 log

⎧⎨
⎩
[

1 + 1
n

n∑
i=1

(xi − yi)
2

]−0.5

× 100

⎫⎬
⎭ (7)

Profiles were considered to be similar if 0 < f1 < 15 and
0 < f2 < 100.

. Results and discussion

.1. Determination of significant factors and factor interactions

Dissolution profiles obtained for both hydrophilic and lipid
atrix tablets are represented in Fig. 1. It is evident that diclofenac

odium release from hydrophilic matrix tablets gets sustained with
he increase in the weight ratio of polyethylene oxide polymer and
ompression force used for tablets manufacturing. Even though
ight hour release was incomplete, it can be assumed that if disso-
ution tests were prolonged it would be confirmed that diclofenac
odium release is complete and at constant rate, approaching zero
rder kinetics. Caffeine release is also evidently sustained with
he increase in the weight ratio of the lipid excipient, as well as
ith the increase in compression force used for lipid matrix tablets
anufacturing. Taking into consideration high solubility of caffeine
37.2 mg/ml), obtained release profiles can be considered satisfac-
orily sustained since the amount of medium that was  available for
issolution of caffeine from lipid formulations was  sufficient for its

mmediate release.
 hydrophilic and lipid matrix tablets, respectively.

The effect of significant factor and factors interactions was rec-
ognized using Lenth’s method and contrast values for significant
factors and factor interactions are represented in Fig. 2. Y-axis (in
Fig. 2) denotes the drug amount (in %) released after specific time
interval (from the first up to the eight hour). It can be seen that
weight ratio of the matrix forming material has, as expected, the
most influence on drug dissolution properties. Nevertheless, it is
important to confirm that other studied factors (compression force,
tablets porosity and tensile strength) are also statistically signifi-
cant factors (p < 0.1). Furthermore, significant factors interactions
are recognized, especially in the case of hydrophilic matrix tablets.
Significant interactions between the hydrophilic polymer weight
ratio and other three studied factors (compression force, tablets
tensile strength and porosity) are confirmed. This is presumably
due to complex mechanism of sustainment of drug release, as pre-
viously described (Petrović et al., 2009a). It should be emphasized
that different factors can demonstrate predominating influence on
drug release in different time periods; therefore careful analysis of
significant factors for each point in dissolution profile should be
considered.

Once it was confirmed that studied formulation and processing
parameters demonstrate significant influence, as well as mutual
interaction, on dissolution properties of hydrophilic and lipid
matrix tablets, the study was continued in order to define design
space using ANNs and decision trees.

3.2. Optimization of static and dynamic neural networks
architecture

MLP  neural network optimized for modeling of drug release is
represented in Fig. 3. The network consists of three layers, input
layer with 4 neurons, hidden layer with 6 neurons and output layer
with 10 neurons. From data source input signals (information about
weight ratio of matrix forming material, compression force, poros-
ity and tablets tensile strength) go to the hidden layer and then to
the output layer (10 outputs are percentages of drug released at
specific time points).

Architecture of ENN optimized for modeling of drug release is
represented in Fig. 4. The network consists of an input layer, two
hidden layers and an output layer of neurons.

Input layer contains four neurons (information about weight
tablets tensile strength), first hidden layer has nineteen neurons,
second hidden layer (copied layer) has eighteen neurons whereas
output layer has 10 neurons (10 outputs are percentages of drug
released at specific time points).
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Fig. 2. Determination of significant (p < 0.1) factors and factor interactions influencing diclofenac sodium and caffeine release profiles.

Fig. 3. Topology of Multi Layered Perceptron static network used for modeling of
drug release for both hydrophilic and lipid matrix tablets.

Fig. 4. Topology of Elman’s dynamic network used for modeling of drug release for
both hydrophilic and lipid matrix tablets.
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sodium release profiles for PEO hydrophilic matrix tablets can be
ig. 5. Comparison of dissolution profiles experimentally obtained (true) and predi
P11  and P12) matrix tablets test formulations.

.3. Modeling of drug release profiles for hydrophilic matrix
ablets by MLP  neural network

MLP  neural network was applied to model diclofenac sodium
elease profiles for PEO hydrophilic matrix tablets, and comparison
f experimentally obtained and predicted dissolution profiles are
epresented in Fig. 5.

Mean error for training and validation data set during training
f MLP  was 4.6 × 10−4. It is obvious that even though there is a
orrelation between experimentally obtained and predicted dis-
olution profiles (confirmed by statistically significant high values
f Pearson correlation coefficient), predicted profile is accurate in
he case of one of the test formulations but not for the other (f2
nd f1 values are given in the Table 3). Obtained results indicate
hat, based on presented training data, MLP  neural network predicts
aster diclofenac sodium release compared to the experimentally
btained results. Difference between predicted and experimentally
btained values is especially marked after the fourth hour of the
rug release study. Application of MLP  in prediction of diclofenac
odium release from polyethylene oxide matrix tablets could lead
o assumption of inaccurate drug release kinetics.

.4. Modeling of drug release profiles for lipid matrix tablets by
LP  neural network

MLP  neural network was applied to model caffeine release
or glyceryl palmitostearate matrix tablets, and comparison of
xperimentally obtained and predicted dissolution profiles are rep-
esented in Fig. 5. Mean error for training and validation data set
uring training of MLP  was 7.57 × 10−3.

In spite of the fact that similarity between the profiles is con-
rmed (Table 3), it is important to point out that there are some

arked differences between experimental and predicted caffeine

elease profiles for test formulations P11 and P12, that were not
aken into account when f1 and f2 values were calculated.
y Multi layered perceptron neural network for hydrophilic (C11 and C12) and lipid

Even though the surface areas under experimental and pre-
dicted dissolution profiles are similar (leading to obtained f1 and
f2 values), shapes of dissolution curves are very different and char-
acteristic interlocking of dissolution curves can be observed. In the
first part of the dissolution profile MLP  model predicts lower and
for the second part of the dissolution profile it predicts higher val-
ues of % (w/w) caffeine released in comparison to experimentally
obtained values. Since caffeine is highly soluble substance it is diffi-
cult to obtain its sustained release. Important disadvantage of MLP
predictions for caffeine release is that the predicted dissolution
profiles are sustained to greater extent in comparison to experi-
mentally obtained caffeine release data. This way, MLP predictions
could mislead to conclusion that sustained release of caffeine is
achieved.

Results obtained are indicative of necessity to carefully inter-
pret correlation coefficients and similarity and difference factors
obtained when experimental and predicted dissolution profiles are
compared.

Therefore, MLP, widely used static (non recurrent) neural net-
work, does not enable successful modeling of drug release profiles
for different types of matrix tablets (hydrophilic and lipid).

3.5. Modeling of drug release profiles for hydrophilic matrix
tablets by ENN

ENN was applied to model diclofenac sodium release profiles
for PEO hydrophilic matrix tablets, and comparison of experimen-
tally obtained and predicted dissolution profiles are represented in
Fig. 6. Mean error for training and validation data set during training
of ENN was  3.82 × 10−2.

Results obtained are an indicator that using ENN, diclofenac
successfully predicted. Adequacy of predictions is confirmed by
both Pearson correlation coefficient and similarity and difference
factors (Table 3). More importantly, it is obvious that dynamic
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Table 3
Characteristics of neural network models used for prediction of diclofenac sodium and caffeine release profiles for hydrophilic and lipid matrix tablets.

Formulation Mean error for training and validation data set Pearson correlation coefficient f2 f1

Multi layered perceptron static neural network
C11 4.60 × 10−4 0.9976 (p < 0.05) 54.96 17.15
C12 0.9881 (p < 0.05) 61.99 13.46
Elman’s  dynamic neural network
C11 3.82 × 10−2 0.9939 (p < 0.05) 78.19 4.36
C12  0.9989 (p < 0.05) 74.31 6.68
Multi  layered perceptron static neural network
P11 7.57 × 10−3 0.9620 (p < 0.05) 49.86 12.89
P12 0.9552 (p < 0.05) 49.26 14.17
Elman’s  dynamic neural network
P11 5.48 × 10−2 0.9991 (p < 0.05) 86.91 1.58
P12  0.9958 (p < 0.05) 71.34 5.24
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ig. 6. Comparison of dissolution profiles experimentally obtained (true) and predi
12)  matrix tablets test formulations.

etwork recognizes patterns of dissolution profiles, i.e. it suc-
essfully predicts changes in kinetics of drug release for test
ormulations which are easily recognized through shapes of release
rofiles as well.

High correlation obtained between experimental and predicted
iclofenac sodium release profiles is improved in comparison
o results obtained when diclofenac sodium release profiles for
ydrophilic matrix tablets were modeled using the genetic algo-
ithm method (Do et al., 2008), and also using Recurrent One
ayer and Gamma  Memory dynamic networks (Petrović et al.,
009b); bearing in mind that different software, network archi-
ecture and/or training and validation data were used in respective
tudies.

.6. Modeling of drug release profiles for lipid matrix tablets by

NN

ENN was applied to model caffeine release profiles for glyceryl
almitostearate matrix tablets, and comparison of experimentally
y Elman’s dynamic neural network for hydrophilic (C11 and C12) and lipid (P11 and

obtained and predicted dissolution profiles are represented in
Fig. 6. Mean error for training and validation data set during training
of ENN was 3.82 × 10−2.

Results obtained support the fact that ENN, being dynamic net-
work, is more appropriate for prediction of caffeine release in
comparison to MLP. ENN was able not only to predict dissolution
profiles of test formulations that were similar to experimentally
obtained results (confirmed by f1 and f2 values, Table 3) but also to
assume changes in caffeine release kinetics.

ENN has allowed modeling of drug release from both hydrophilic
and lipid matrix tablets. It is important to emphasize that the net-
work of the same architecture has been used to develop models for
prediction of drug release from different types of matrix systems
having different mechanisms controlling the drug release. Devel-
oped ENN models can be used to predict dissolution profiles of

diclofenac sodium and caffeine for hydrophilic and lipid matrix
tablets, respectively, on the basis of knowledge of weight ratio
of matrix forming material, compression force and tablets poros-
ity and tensile strength. Successful validation of ENNs predictions
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Fig. 7. Representation of decision tree developed for prediction of ranges of diclofenac sodium released after two hours from PEO hydrophilic matrix tablets.
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Fig. 8. Comparison of dissolution profiles experimentally obta

llows us to contend that design space for drugs dissolution rate
as been identified and that dissolution properties of any matrix
ablet within the design space (design space is confined by limiting
alues used for training and validation of ANNs) can be successfully
redicted.

.7. Modeling of drug release profiles using decision tree
ethodology
Using decision tree methodology it was possible to predict
anges of drug released in certain time periods, on the basis of
ata from the training and validation set. An example of developed
�) and ranges predicted by decision trees methodology (. . .).

decision tree is represented in Fig. 7. Developed decision trees
have several nodes that are indicative of differences in drug release
profiles in aspect to weight ratio of the matrix forming material,
compression force and tablets porosity and tensile strength. Once
decision trees were grown it was obvious that the main splitting
criterion is weight ratio of the matrix forming material, followed
by the compression force and then tablets porosity and/or tensile
strength. Trees splitting can serve as the basis for creation of so

called if then rules, e.g. if PEO as matrix forming material weight
ratio is < 5% w/w and compression force is <3 kN then percentage
of diclofenac sodium released after 2 h is in the range of 29.62–33.43
(as represented in Fig. 7).
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Decision trees were used to predict dissolution behavior of test
ormulations for both hydrophilic and lipid matrix tablets and
btained results are represented in Fig. 8. It is clear from Fig. 8
hat ranges predicted for diclofenac sodium release profiles are nar-
ower in comparison to caffeine release profiles. This could be due
o fact that diclofenac sodium and caffeine dissolution profiles used
or tree construction differed in terms of their internal variability.

The possibility to predict ranges of drug released after cer-
ain time periods gives rise to possible application of decision tree

ethodology in selection of formulations meeting desired dissolu-
ion criteria (e.g. pharmacopoeial specification on amount of drug
eleased after certain time period). Furthermore it is possible to
se tree splitting as a supporting tool in risk analysis – tree node
an point out to potential risk and, at the same time risk control
trategies can be identified (selection of adequate values of splitting
ttributes).

It is important to point out that further investigation of applica-
ion of decision trees in drug release modeling requires larger data
ets. Inductive generalization given in the form of a decision tree
s dependent on the sufficient amount of data. The amount of data
equired is affected by factors such as the number of properties and
lasses and the complexity of the classification model (Kantardzic,
011).

. Conclusion

Obtained results indicate the possibility of prediction of drug
elease profiles on the basis of key formulation factors, process
arameters and tablet properties. Neural networks of different
rchitecture were applied to study hydrophilic and lipid matrix
ablets drug release profiles. It was demonstrated that dynamic
eural network, ENN, is superior in drug release prediction in com-
arison to static neural network, MLP. In addition to successful
rediction of dissolution profiles, usage of decision trees enabled
eneration of beneficial if then rules. Developed methods allow
imple, yet very precise way of drug release predictions for both
ydrophilic and lipid matrix tablets having controlled drug release.
o far, there have been no methods in the literature that were
eveloped for prediction of drug release regardless the type of
atrix system. Therefore, it is to be expected that presented in sil-

co tools facilitate implementation of quality by design concept,
.e. description and understanding of design space and quality risk

anagement for formulations and processing parameters being
eveloped.
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